Mining the Relationship Between COVID-19 Sentiment and Market Performance
Ziyuan Xia,
Jeffery Chen and
Anchen Sun
Papers from arXiv.org
Abstract:
At the beginning of the COVID-19 outbreak in March, we observed one of the largest stock market crashes in history. Within the months following this, a volatile bullish climb back to pre-pandemic performances and higher. In this paper, we study the stock market behavior during the initial few months of the COVID-19 pandemic in relation to COVID-19 sentiment. Using text sentiment analysis of Twitter data, we look at tweets that contain key words in relation to the COVID-19 pandemic and the sentiment of the tweet to understand whether sentiment can be used as an indicator for stock market performance. There has been previous research done on applying natural language processing and text sentiment analysis to understand the stock market performance, given how prevalent the impact of COVID-19 is to the economy, we want to further the application of these techniques to understand the relationship that COVID-19 has with stock market performance. Our findings show that there is a strong relationship to COVID-19 sentiment derived from tweets that could be used to predict stock market performance in the future.
Date: 2021-01, Revised 2023-03
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2101.02587 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.02587
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().