Forecasting Commodity Prices Using Long Short-Term Memory Neural Networks
Racine Ly (),
Fousseini Traore and
Khadim Dia
Papers from arXiv.org
Abstract:
This paper applies a recurrent neural network (RNN) method to forecast cotton and oil prices. We show how these new tools from machine learning, particularly Long-Short Term Memory (LSTM) models, complement traditional methods. Our results show that machine learning methods fit reasonably well the data but do not outperform systematically classical methods such as Autoregressive Integrated Moving Average (ARIMA) models in terms of out of sample forecasts. However, averaging the forecasts from the two type of models provide better results compared to either method. Compared to the ARIMA and the LSTM, the Root Mean Squared Error (RMSE) of the average forecast was 0.21 and 21.49 percent lower respectively for cotton. For oil, the forecast averaging does not provide improvements in terms of RMSE. We suggest using a forecast averaging method and extending our analysis to a wide range of commodity prices.
Date: 2021-01, Revised 2021-01
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2101.03087 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.03087
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().