Deep Reinforcement Learning with Function Properties in Mean Reversion Strategies
Sophia Gu
Papers from arXiv.org
Abstract:
Over the past decades, researchers have been pushing the limits of Deep Reinforcement Learning (DRL). Although DRL has attracted substantial interest from practitioners, many are blocked by having to search through a plethora of available methodologies that are seemingly alike, while others are still building RL agents from scratch based on classical theories. To address the aforementioned gaps in adopting the latest DRL methods, I am particularly interested in testing out if any of the recent technology developed by the leads in the field can be readily applied to a class of optimal trading problems. Unsurprisingly, many prominent breakthroughs in DRL are investigated and tested on strategic games: from AlphaGo to AlphaStar and at about the same time, OpenAI Five. Thus, in this writing, I want to show precisely how to use a DRL library that is initially built for games in a fundamental trading problem; mean reversion. And by introducing a framework that incorporates economically-motivated function properties, I also demonstrate, through the library, a highly-performant and convergent DRL solution to decision-making financial problems in general.
Date: 2021-01, Revised 2021-09
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2101.03418 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.03418
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().