On the RND under Heston's stochastic volatility model
Ben Boukai
Papers from arXiv.org
Abstract:
We consider Heston's (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Heston's solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Heston's SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons' option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-parameter versions of the {\it Log-Normal, Inverse-Gaussian, Gamma, Weibull} and the {\it Inverse-Weibull} distributions are all members of this class and thus provide explicit risk-neutral densities (RND) for Heston's pricing model. We demonstrate, via exact calculations and Monte-Carlo simulations, the applicability and suitability of these explicit RNDs using already published Index data with a calibrated Heston model (S\&P500, Bakshi, Cao and Chen (1997), and ODAX, Mr\'azek and Posp\'i\v{s}il (2017)), as well as current option market data (AMD).
Date: 2021-01
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2101.03626 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.03626
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().