Dynamic Ordering Learning in Multivariate Forecasting
Bruno P. C. Levy and
Hedibert F. Lopes
Papers from arXiv.org
Abstract:
In many fields where the main goal is to produce sequential forecasts for decision making problems, the good understanding of the contemporaneous relations among different series is crucial for the estimation of the covariance matrix. In recent years, the modified Cholesky decomposition appeared as a popular approach to covariance matrix estimation. However, its main drawback relies on the imposition of the series ordering structure. In this work, we propose a highly flexible and fast method to deal with the problem of ordering uncertainty in a dynamic fashion with the use of Dynamic Order Probabilities. We apply the proposed method in two different forecasting contexts. The first is a dynamic portfolio allocation problem, where the investor is able to learn the contemporaneous relationships among different currencies improving final decisions and economic performance. The second is a macroeconomic application, where the econometrician can adapt sequentially to new economic environments, switching the contemporaneous relations among macroeconomic variables over time.
Date: 2021-01, Revised 2021-11
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2101.04164 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.04164
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().