Visual Analytics approach for finding spatiotemporal patterns from COVID19
Arunav Das
Papers from arXiv.org
Abstract:
Bounce Back Loan is amongst a number of UK business financial support schemes launched by UK Government in 2020 amidst pandemic lockdown. Through these schemes, struggling businesses are provided financial support to weather economic slowdown from pandemic lockdown. {\pounds}43.5bn loan value has been provided as of 17th Dec2020. However, with no major checks for granting these loans and looming prospect of loan losses from write-offs from failed businesses and fraud, this paper theorizes prospect of applying spatiotemporal modelling technique to explore if geospatial patterns and temporal analysis could aid design of loan grant criteria for schemes. Application of Clustering and Visual Analytics framework to business demographics, survival rate and Sector concentration shows Inner and Outer London spatial patterns which historic business failures and reversal of the patterns under COVID-19 implying sector influence on spatial clusters. Combination of unsupervised clustering technique with multinomial logistic regression modelling on research datasets complimented by additional datasets on other support schemes, business structure and financial crime, is recommended for modelling business vulnerability to certain types of financial market or economic condition. The limitations of clustering technique for high dimensional is discussed along with relevance of an applicable model for continuing the research through next steps.
Date: 2021-01
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2101.06476 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.06476
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().