EconPapers    
Economics at your fingertips  
 

Analysis of stock index with a generalized BN-S model: an approach based on machine learning and fuzzy parameters

Xianfei Hui, Baiqing Sun, Hui Jiang and Indranil SenGupta

Papers from arXiv.org

Abstract: In this paper we implement a combination of data-science and fuzzy theory to improve the classical Barndorff-Nielsen and Shephard model, and implement this to analyze the S&P 500 index. We pre-process the index data based on fuzzy theory. After that, S&P 500 stock index data for the past ten years are analyzed, and a deterministic parameter is extracted using various machine and deep learning methods. The results show that the new model, where fuzzy parameters are incorporated, can incorporate the long-term dependence in the classical Barndorff-Nielsen and Shephard model. The modification is based on only a few changes compared to the classical model. At the same time, the resulting analysis effectively captures the stochastic dynamics of the stock index time series.

Date: 2021-01, Revised 2022-02
New Economics Papers: this item is included in nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2101.08984 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.08984

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2101.08984