Consistent specification testing under spatial dependence
Abhimanyu Gupta and
Xi Qu
Papers from arXiv.org
Abstract:
We propose a series-based nonparametric specification test for a regression function when data are spatially dependent, the `space' being of a general economic or social nature. Dependence can be parametric, parametric with increasing dimension, semiparametric or any combination thereof, thus covering a vast variety of settings. These include spatial error models of varying types and levels of complexity. Under a new smooth spatial dependence condition, our test statistic is asymptotically standard normal. To prove the latter property, we establish a central limit theorem for quadratic forms in linear processes in an increasing dimension setting. Finite sample performance is investigated in a simulation study, with a bootstrap method also justified and illustrated, and empirical examples illustrate the test with real-world data.
Date: 2021-01, Revised 2022-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2101.10255 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.10255
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().