Understanding the uneven spread of COVID-19 in the context of the global interconnected economy
Dimitrios Tsiotas and
Vassilis Tselios
Papers from arXiv.org
Abstract:
Using network analysis, this paper develops a multidimensional methodological framework for understanding the uneven (cross-country) spread of COVID-19 in the context of the global interconnected economy. The globally interconnected system of tourism mobility is modeled as a complex network, where two main stages in the temporal spread of COVID-19 are revealed and defined by the cutting-point of the 44th day from Wuhan. The first stage describes the outbreak in Asia and North America, the second one in Europe, South America, and Africa, while the outbreak in Oceania is spread along both stages. The analysis shows that highly connected nodes in the global tourism network (GTN) are infected early by the pandemic, while nodes of lower connectivity are late infected. Moreover, countries with the same network centrality as China were early infected on average by COVID-19. The paper also finds that network interconnectedness, economic openness, and transport integration are key determinants in the early global spread of the pandemic, and it reveals that the spatio-temporal patterns of the worldwide spread of COVID-19 are more a matter of network interconnectivity than of spatial proximity.
Date: 2021-01
New Economics Papers: this item is included in nep-net and nep-sea
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2101.11036 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.11036
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().