EconPapers    
Economics at your fingertips  
 

Deep ReLU Network Expression Rates for Option Prices in high-dimensional, exponential L\'evy models

Lukas Gonon and Christoph Schwab

Papers from arXiv.org

Abstract: We study the expression rates of deep neural networks (DNNs for short) for option prices written on baskets of $d$ risky assets, whose log-returns are modelled by a multivariate L\'evy process with general correlation structure of jumps. We establish sufficient conditions on the characteristic triplet of the L\'evy process $X$ that ensure $\varepsilon$ error of DNN expressed option prices with DNNs of size that grows polynomially with respect to $\mathcal{O}(\varepsilon^{-1})$, and with constants implied in $\mathcal{O}(\cdot)$ which grow polynomially with respect $d$, thereby overcoming the curse of dimensionality and justifying the use of DNNs in financial modelling of large baskets in markets with jumps. In addition, we exploit parabolic smoothing of Kolmogorov partial integrodifferential equations for certain multivariate L\'evy processes to present alternative architectures of ReLU DNNs that provide $\varepsilon$ expression error in DNN size $\mathcal{O}(|\log(\varepsilon)|^a)$ with exponent $a \sim d$, however, with constants implied in $\mathcal{O}(\cdot)$ growing exponentially with respect to $d$. Under stronger, dimension-uniform non-degeneracy conditions on the L\'evy symbol, we obtain algebraic expression rates of option prices in exponential L\'evy models which are free from the curse of dimensionality. In this case the ReLU DNN expression rates of prices depend on certain sparsity conditions on the characteristic L\'evy triplet. We indicate several consequences and possible extensions of the present results.

Date: 2021-01, Revised 2021-07
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://arxiv.org/pdf/2101.11897 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2101.11897

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2101.11897