A Stochastic Time Series Model for Predicting Financial Trends using NLP
Pratyush Muthukumar and
Jie Zhong
Papers from arXiv.org
Abstract:
Stock price forecasting is a highly complex and vitally important field of research. Recent advancements in deep neural network technology allow researchers to develop highly accurate models to predict financial trends. We propose a novel deep learning model called ST-GAN, or Stochastic Time-series Generative Adversarial Network, that analyzes both financial news texts and financial numerical data to predict stock trends. We utilize cutting-edge technology like the Generative Adversarial Network (GAN) to learn the correlations among textual and numerical data over time. We develop a new method of training a time-series GAN directly using the learned representations of Naive Bayes' sentiment analysis on financial text data alongside technical indicators from numerical data. Our experimental results show significant improvement over various existing models and prior research on deep neural networks for stock price forecasting.
Date: 2021-02
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cwa, nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2102.01290 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.01290
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().