EconPapers    
Economics at your fingertips  
 

Cutoff stability under distributional constraints with an application to summer internship matching

Haris Aziz, Anton Baychkov and Péter Biró

Papers from arXiv.org

Abstract: We introduce a new two-sided stable matching problem that describes the summer internship matching practice of an Australian university. The model is a case between two models of Kamada and Kojima on matchings with distributional constraints. We study three solution concepts, the strong and weak stability concepts proposed by Kamada and Kojima, and a new one in between the two, called cutoff stability. Kamada and Kojima showed that a strongly stable matching may not exist in their most restricted model with disjoint regional quotas. Our first result is that checking its existence is NP-hard. We then show that a cutoff stable matching exists not just for the summer internship problem but also for the general matching model with arbitrary heredity constraints. We present an algorithm to compute a cutoff stable matching and show that it runs in polynomial time in our special case of summer internship model. However, we also show that finding a maximum size cutoff stable matching is NP-hard, but we provide a Mixed Integer Linear Program formulation for this optimisation problem.

Date: 2021-02, Revised 2023-10
New Economics Papers: this item is included in nep-des
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/2102.02931 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.02931

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.02931