EconPapers    
Economics at your fingertips  
 

Applications of Machine Learning in Document Digitisation

Christian Dahl, Torben S. D. Johansen, Emil N. S{\o}rensen, Christian E. Westermann and Simon F. Wittrock

Papers from arXiv.org

Abstract: Data acquisition forms the primary step in all empirical research. The availability of data directly impacts the quality and extent of conclusions and insights. In particular, larger and more detailed datasets provide convincing answers even to complex research questions. The main problem is that 'large and detailed' usually implies 'costly and difficult', especially when the data medium is paper and books. Human operators and manual transcription have been the traditional approach for collecting historical data. We instead advocate the use of modern machine learning techniques to automate the digitisation process. We give an overview of the potential for applying machine digitisation for data collection through two illustrative applications. The first demonstrates that unsupervised layout classification applied to raw scans of nurse journals can be used to construct a treatment indicator. Moreover, it allows an assessment of assignment compliance. The second application uses attention-based neural networks for handwritten text recognition in order to transcribe age and birth and death dates from a large collection of Danish death certificates. We describe each step in the digitisation pipeline and provide implementation insights.

Date: 2021-02
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://arxiv.org/pdf/2102.03239 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.03239

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.03239