EconPapers    
Economics at your fingertips  
 

Black-box model risk in finance

Samuel N. Cohen, Derek Snow and Lukasz Szpruch

Papers from arXiv.org

Abstract: Machine learning models are increasingly used in a wide variety of financial settings. The difficulty of understanding the inner workings of these systems, combined with their wide applicability, has the potential to lead to significant new risks for users; these risks need to be understood and quantified. In this sub-chapter, we will focus on a well studied application of machine learning techniques, to pricing and hedging of financial options. Our aim will be to highlight the various sources of risk that the introduction of machine learning emphasises or de-emphasises, and the possible risk mitigation and management strategies that are available.

Date: 2021-02
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cwa, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2102.04757 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.04757

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2102.04757