EconPapers    
Economics at your fingertips  
 

Wavelet Denoised-ResNet CNN and LightGBM Method to Predict Forex Rate of Change

Yiqi Zhao and Matloob Khushi

Papers from arXiv.org

Abstract: Foreign Exchange (Forex) is the largest financial market in the world. The daily trading volume of the Forex market is much higher than that of stock and futures markets. Therefore, it is of great significance for investors to establish a foreign exchange forecast model. In this paper, we propose a Wavelet Denoised-ResNet with LightGBM model to predict the rate of change of Forex price after five time intervals to allow enough time to execute trades. All the prices are denoised by wavelet transform, and a matrix of 30 time intervals is formed by calculating technical indicators. Image features are obtained by feeding the maxtrix into a ResNet. Finally, the technical indicators and image features are fed to LightGBM. Our experiments on 5-minutes USDJPY demonstrate that the model outperforms baseline modles with MAE: 0.240977x10EXP-3 MSE: 0.156x10EXP-6 and RMSE: 0.395185x10EXP-3. An accurate price prediction after 25 minutes in future provides a window of opportunity for hedge funds algorithm trading. The code is available from https://mkhushi.github.io/

Date: 2021-01
New Economics Papers: this item is included in nep-for
References: Add references at CitEc
Citations:

Published in 2020 IEEE International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 11-17 November 2020

Downloads: (external link)
http://arxiv.org/pdf/2102.04861 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.04861

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.04861