Deep Reinforcement Learning for Portfolio Optimization using Latent Feature State Space (LFSS) Module
Kumar Yashaswi
Papers from arXiv.org
Abstract:
Dynamic Portfolio optimization is the process of distribution and rebalancing of a fund into different financial assets such as stocks, cryptocurrencies, etc, in consecutive trading periods to maximize accumulated profits or minimize risks over a time horizon. This field saw huge developments in recent years, because of the increased computational power and increased research in sequential decision making through control theory. Recently Reinforcement Learning(RL) has been an important tool in the development of sequential and dynamic portfolio optimization theory. In this paper, we design a Deep Reinforcement Learning(DRL) framework as an autonomous portfolio optimization agent consisting of a Latent Feature State Space(LFSS) Module for filtering and feature extraction of financial data which is used as a state space for deep RL model. We develop an extensive RL agent with high efficiency and performance advantages over several benchmarks and model-free RL agents used in prior work. The noisy and non-stationary behaviour of daily asset prices in the financial market is addressed through Kalman Filter. Autoencoders, ZoomSVD, and restricted Boltzmann machines were the models used and compared in the module to extract relevant time series features as state space. We simulate weekly data, with practical constraints and transaction costs, on a portfolio of S&P 500 stocks. We introduce a new benchmark based on technical indicator Kd-Index and Mean-Variance Model as compared to equal weighted portfolio used in most of the prior work. The study confirms that the proposed RL portfolio agent with state space function in the form of LFSS module gives robust results with an attractive performance profile over baseline RL agents and given benchmarks.
Date: 2021-02
New Economics Papers: this item is included in nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2102.06233 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.06233
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().