EconPapers    
Economics at your fingertips  
 

Statistical Power for Estimating Treatment Effects Using Difference-in-Differences and Comparative Interrupted Time Series Designs with Variation in Treatment Timing

Peter Z. Schochet

Papers from arXiv.org

Abstract: This article develops new closed-form variance expressions for power analyses for commonly used difference-in-differences (DID) and comparative interrupted time series (CITS) panel data estimators. The main contribution is to incorporate variation in treatment timing into the analysis. The power formulas also account for other key design features that arise in practice: autocorrelated errors, unequal measurement intervals, and clustering due to the unit of treatment assignment. We consider power formulas for both cross-sectional and longitudinal models and allow for covariates. An illustrative power analysis provides guidance on appropriate sample sizes. The key finding is that accounting for treatment timing increases required sample sizes. Further, DID estimators have considerably more power than standard CITS and ITS estimators. An available Shiny R dashboard performs the sample size calculations for the considered estimators.

Date: 2021-02, Revised 2021-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2102.06770 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.06770

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.06770