Deep Learning for Market by Order Data
Zihao Zhang,
Bryan Lim and
Stefan Zohren
Papers from arXiv.org
Abstract:
Market by order (MBO) data - a detailed feed of individual trade instructions for a given stock on an exchange - is arguably one of the most granular sources of microstructure information. While limit order books (LOBs) are implicitly derived from it, MBO data is largely neglected by current academic literature which focuses primarily on LOB modelling. In this paper, we demonstrate the utility of MBO data for forecasting high-frequency price movements, providing an orthogonal source of information to LOB snapshots and expanding the universe of alpha discovery. We provide the first predictive analysis on MBO data by carefully introducing the data structure and presenting a specific normalisation scheme to consider level information in order books and to allow model training with multiple instruments. Through forecasting experiments using deep neural networks, we show that while MBO-driven and LOB-driven models individually provide similar performance, ensembles of the two can lead to improvements in forecasting accuracy - indicating that MBO data is additive to LOB-based features.
Date: 2021-02, Revised 2021-07
New Economics Papers: this item is included in nep-big, nep-cmp, nep-cwa, nep-fmk, nep-for and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://arxiv.org/pdf/2102.08811 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.08811
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).