EconPapers    
Economics at your fingertips  
 

Big Data meets Causal Survey Research: Understanding Nonresponse in the Recruitment of a Mixed-mode Online Panel

Barbara Felderer, Jannis Kueck and Martin Spindler

Papers from arXiv.org

Abstract: Survey scientists increasingly face the problem of high-dimensionality in their research as digitization makes it much easier to construct high-dimensional (or "big") data sets through tools such as online surveys and mobile applications. Machine learning methods are able to handle such data, and they have been successfully applied to solve \emph{predictive} problems. However, in many situations, survey statisticians want to learn about \emph{causal} relationships to draw conclusions and be able to transfer the findings of one survey to another. Standard machine learning methods provide biased estimates of such relationships. We introduce into survey statistics the double machine learning approach, which gives approximately unbiased estimators of causal parameters, and show how it can be used to analyze survey nonresponse in a high-dimensional panel setting.

Date: 2021-02
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2102.08994 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.08994

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.08994