Deep Structural Estimation: With an Application to Option Pricing
Hui Chen,
Antoine Didisheim and
Simon Scheidegger
Papers from arXiv.org
Abstract:
We propose a novel structural estimation framework in which we train a surrogate of an economic model with deep neural networks. Our methodology alleviates the curse of dimensionality and speeds up the evaluation and parameter estimation by orders of magnitudes, which significantly enhances one's ability to conduct analyses that require frequent parameter re-estimation. As an empirical application, we compare two popular option pricing models (the Heston and the Bates model with double-exponential jumps) against a non-parametric random forest model. We document that: a) the Bates model produces better out-of-sample pricing on average, but both structural models fail to outperform random forest for large areas of the volatility surface; b) random forest is more competitive at short horizons (e.g., 1-day), for short-dated options (with less than 7 days to maturity), and on days with poor liquidity; c) both structural models outperform random forest in out-of-sample delta hedging; d) the Heston model's relative performance has deteriorated significantly after the 2008 financial crisis.
Date: 2021-02
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2102.09209 Latest version (application/pdf)
Related works:
Working Paper: Deep Structural Estimation:With an Application to Option Pricing (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.09209
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().