Estimation and Inference by Stochastic Optimization: Three Examples
Jean-Jacques Forneron and
Serena Ng ()
Papers from arXiv.org
Abstract:
This paper illustrates two algorithms designed in Forneron & Ng (2020): the resampled Newton-Raphson (rNR) and resampled quasi-Newton (rqN) algorithms which speed-up estimation and bootstrap inference for structural models. An empirical application to BLP shows that computation time decreases from nearly 5 hours with the standard bootstrap to just over 1 hour with rNR, and only 15 minutes using rqN. A first Monte-Carlo exercise illustrates the accuracy of the method for estimation and inference in a probit IV regression. A second exercise additionally illustrates statistical efficiency gains relative to standard estimation for simulation-based estimation using a dynamic panel regression example.
Date: 2021-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2102.10443 Latest version (application/pdf)
Related works:
Journal Article: Estimation and Inference by Stochastic Optimization: Three Examples (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.10443
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().