Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension
Rahul Singh
Papers from arXiv.org
Abstract:
Kernel balancing weights provide confidence intervals for average treatment effects, based on the idea of balancing covariates for the treated group and untreated group in feature space, often with ridge regularization. Previous works on the classical kernel ridge balancing weights have certain limitations: (i) not articulating generalization error for the balancing weights, (ii) typically requiring correct specification of features, and (iii) justifying Gaussian approximation for only average effects. I interpret kernel balancing weights as kernel ridge Riesz representers (KRRR) and address these limitations via a new characterization of the counterfactual effective dimension. KRRR is an exact generalization of kernel ridge regression and kernel ridge balancing weights. I prove strong properties similar to kernel ridge regression: population $L_2$ rates controlling generalization error, and a standalone closed form solution that can interpolate. The framework relaxes the stringent assumption that the underlying regression model is correctly specified by the features. It extends Gaussian approximation beyond average effects to heterogeneous effects, justifying confidence sets for causal functions. I use KRRR to quantify uncertainty for heterogeneous treatment effects, by age, of 401(k) eligibility on assets.
Date: 2021-02, Revised 2024-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2102.11076 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.11076
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).