EconPapers    
Economics at your fingertips  
 

Bridging factor and sparse models

Jianqing Fan, Ricardo Masini and Marcelo C. Medeiros

Papers from arXiv.org

Abstract: Factor and sparse models are two widely used methods to impose a low-dimensional structure in high-dimensions. However, they are seemingly mutually exclusive. We propose a lifting method that combines the merits of these two models in a supervised learning methodology that allows for efficiently exploring all the information in high-dimensional datasets. The method is based on a flexible model for high-dimensional panel data, called factor-augmented regression model with observable and/or latent common factors, as well as idiosyncratic components. This model not only includes both principal component regression and sparse regression as specific models but also significantly weakens the cross-sectional dependence and facilitates model selection and interpretability. The method consists of several steps and a novel test for (partial) covariance structure in high dimensions to infer the remaining cross-section dependence at each step. We develop the theory for the model and demonstrate the validity of the multiplier bootstrap for testing a high-dimensional (partial) covariance structure. The theory is supported by a simulation study and applications.

Date: 2021-02, Revised 2022-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/2102.11341 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.11341

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2022-09-07
Handle: RePEc:arx:papers:2102.11341