EconPapers    
Economics at your fingertips  
 

Approximation of Stochastic Volterra Equations with kernels of completely monotone type

Aur\'elien Alfonsi and Ahmed Kebaier

Papers from arXiv.org

Abstract: In this work, we develop a multifactor approximation for $d$-dimensional Stochastic Volterra Equations (SVE) with Lipschitz coefficients and kernels of completely monotone type that may be singular. First, we prove an $L^2$-estimation between two SVEs with different kernels, which provides a quantification of the error between the SVE and any multifactor Stochastic Differential Equation (SDE) approximation. For the particular rough kernel case with Hurst parameter lying in $(0,1/2)$, we propose various approximating multifactor kernels, state their rates of convergence and illustrate their efficiency for the rough Bergomi model. Second, we study a Euler discretization of the multifactor SDE and establish a convergence result towards the SVE that is uniform with respect to the approximating multifactor kernels. These obtained results lead us to build a new multifactor Euler scheme that reduces significantly the computational cost in an asymptotic way compared to the Euler scheme for SVEs. Finally, we show that our multifactor Euler scheme outperforms the Euler scheme for SVEs for option pricing in the rough Heston model.

Date: 2021-02, Revised 2022-03
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://arxiv.org/pdf/2102.13505 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.13505

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2102.13505