The Kernel Trick for Nonlinear Factor Modeling
Varlam Kutateladze
Papers from arXiv.org
Abstract:
Factor modeling is a powerful statistical technique that permits to capture the common dynamics in a large panel of data with a few latent variables, or factors, thus alleviating the curse of dimensionality. Despite its popularity and widespread use for various applications ranging from genomics to finance, this methodology has predominantly remained linear. This study estimates factors nonlinearly through the kernel method, which allows flexible nonlinearities while still avoiding the curse of dimensionality. We focus on factor-augmented forecasting of a single time series in a high-dimensional setting, known as diffusion index forecasting in macroeconomics literature. Our main contribution is twofold. First, we show that the proposed estimator is consistent and it nests linear PCA estimator as well as some nonlinear estimators introduced in the literature as specific examples. Second, our empirical application to a classical macroeconomic dataset demonstrates that this approach can offer substantial advantages over mainstream methods.
Date: 2021-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2103.01266 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.01266
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).