Causal inference with misspecified exposure mappings: separating definitions and assumptions
Fredrik S\"avje
Papers from arXiv.org
Abstract:
Exposure mappings facilitate investigations of complex causal effects when units interact in experiments. Current methods require experimenters to use the same exposure mappings both to define the effect of interest and to impose assumptions on the interference structure. However, the two roles rarely coincide in practice, and experimenters are forced to make the often questionable assumption that their exposures are correctly specified. This paper argues that the two roles exposure mappings currently serve can, and typically should, be separated, so that exposures are used to define effects without necessarily assuming that they are capturing the complete causal structure in the experiment. The paper shows that this approach is practically viable by providing conditions under which exposure effects can be precisely estimated when the exposures are misspecified. Some important questions remain open.
Date: 2021-03, Revised 2023-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2103.06471 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.06471
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().