EconPapers    
Economics at your fingertips  
 

Finding Subgroups with Significant Treatment Effects

Jann Spiess, Vasilis Syrgkanis and Victor Yaneng Wang

Papers from arXiv.org

Abstract: Researchers often run resource-intensive randomized controlled trials (RCTs) to estimate the causal effects of interventions on outcomes of interest. Yet these outcomes are often noisy, and estimated overall effects can be small or imprecise. Nevertheless, we may still be able to produce reliable evidence of the efficacy of an intervention by finding subgroups with significant effects. In this paper, we propose a machine-learning method that is specifically optimized for finding such subgroups in noisy data. Unlike available methods for personalized treatment assignment, our tool is fundamentally designed to take significance testing into account: it produces a subgroup that is chosen to maximize the probability of obtaining a statistically significant positive treatment effect. We provide a computationally efficient implementation using decision trees and demonstrate its gain over selecting subgroups based on positive (estimated) treatment effects. Compared to standard tree-based regression and classification tools, this approach tends to yield higher power in detecting subgroups affected by the treatment.

Date: 2021-03, Revised 2023-12
New Economics Papers: this item is included in nep-big and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2103.07066 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.07066

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-30
Handle: RePEc:arx:papers:2103.07066