Online Learning with Radial Basis Function Networks
Gabriel Borrageiro,
Nikan Firoozye and
Paolo Barucca
Papers from arXiv.org
Abstract:
Financial time series are characterised by their nonstationarity and autocorrelation. Even if these time series are differenced, technically ensuring their stationarity, they experience regular covariate shifts and concept drifts. Against this backdrop, we combine feature representation transfer with sequential optimisation to provide multi-horizon returns forecasts. Our online learning rbfnet outperforms a random-walk baseline and several powerful batch learners. The rbfnets we formulate are naturally designed to measure the similarity between test samples and continuously updated prototypes that capture the characteristics of the feature space.
Date: 2021-03, Revised 2022-10
New Economics Papers: this item is included in nep-big and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2103.08414 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.08414
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().