Simultaneous Decorrelation of Matrix Time Series
Yuefeng Han,
Rong Chen,
Cun-Hui Zhang and
Qiwei Yao
Papers from arXiv.org
Abstract:
We propose a contemporaneous bilinear transformation for a $p\times q$ matrix time series to alleviate the difficulties in modeling and forecasting matrix time series when $p$ and/or $q$ are large. The resulting transformed matrix assumes a block structure consisting of several small matrices, and those small matrix series are uncorrelated across all times. Hence an overall parsimonious model is achieved by modelling each of those small matrix series separately without the loss of information on the linear dynamics. Such a parsimonious model often has better forecasting performance, even when the underlying true dynamics deviates from the assumed uncorrelated block structure after transformation. The uniform convergence rates of the estimated transformation are derived, which vindicate an important virtue of the proposed bilinear transformation, i.e. it is technically equivalent to the decorrelation of a vector time series of dimension max$(p,q)$ instead of $p\times q$. The proposed method is illustrated numerically via both simulated and real data examples.
Date: 2021-03, Revised 2022-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2103.09411 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.09411
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().