Monte Carlo algorithm for the extrema of tempered stable processes
Jorge Ignacio Gonz\'alez C\'azares and
Aleksandar Mijatovi\'c
Papers from arXiv.org
Abstract:
We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained and the position at a given (constant) time of an exponentially tempered L\'evy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb guidelines for users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
Date: 2021-03, Revised 2022-12
New Economics Papers: this item is included in nep-cmp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Advances in Applied Probability, p. 1-28 (2023)
Downloads: (external link)
http://arxiv.org/pdf/2103.15310 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.15310
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().