Text Mining of Stocktwits Data for Predicting Stock Prices
Mukul Jaggi,
Priyanka Mandal,
Shreya Narang,
Usman Naseem and
Matloob Khushi
Papers from arXiv.org
Abstract:
Stock price prediction can be made more efficient by considering the price fluctuations and understanding the sentiments of people. A limited number of models understand financial jargon or have labelled datasets concerning stock price change. To overcome this challenge, we introduced FinALBERT, an ALBERT based model trained to handle financial domain text classification tasks by labelling Stocktwits text data based on stock price change. We collected Stocktwits data for over ten years for 25 different companies, including the major five FAANG (Facebook, Amazon, Apple, Netflix, Google). These datasets were labelled with three labelling techniques based on stock price changes. Our proposed model FinALBERT is fine-tuned with these labels to achieve optimal results. We experimented with the labelled dataset by training it on traditional machine learning, BERT, and FinBERT models, which helped us understand how these labels behaved with different model architectures. Our labelling method competitive advantage is that it can help analyse the historical data effectively, and the mathematical function can be easily customised to predict stock movement.
Date: 2021-03
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Published in Appl. Syst. Innov. 2021, 4, 13
Downloads: (external link)
http://arxiv.org/pdf/2103.16388 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2103.16388
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().