EconPapers    
Economics at your fingertips  
 

Local Projections vs. VARs: Lessons From Thousands of DGPs

Dake Li, Mikkel Plagborg-M{\o}ller and Christian K. Wolf

Papers from arXiv.org

Abstract: We conduct a simulation study of Local Projection (LP) and Vector Autoregression (VAR) estimators of structural impulse responses across thousands of data generating processes (DGPs), designed to mimic the properties of the universe of U.S. macroeconomic data. Our analysis considers various structural identification schemes and several variants of LP and VAR estimators, and we pay particular attention to the role of the researcher's loss function. A clear bias-variance trade-off emerges: Because our DGPs are not exactly finite-order VAR models, LPs have lower bias than VAR estimators; however, the variance of LPs is substantially higher than that of VARs at intermediate or long horizons. Unless researchers are overwhelmingly concerned with bias, shrinkage via Bayesian VARs or penalized LPs is attractive.

Date: 2021-04
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/2104.00655 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2104.00655

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2021-04-24
Handle: RePEc:arx:papers:2104.00655