EconPapers    
Economics at your fingertips  
 

A Fast Evidential Approach for Stock Forecasting

Tianxiang Zhan and Fuyuan Xiao

Papers from arXiv.org

Abstract: Within the framework of evidence theory, the confidence functions of different information can be combined into a combined confidence function to solve uncertain problems. The Dempster combination rule is a classic method of fusing different information. This paper proposes a similar confidence function for the time point in the time series. The Dempster combination rule can be used to fuse the growth rate of the last time point, and finally a relatively accurate forecast data can be obtained. Stock price forecasting is a concern of economics. The stock price data is large in volume, and more accurate forecasts are required at the same time. The classic methods of time series, such as ARIMA, cannot balance forecasting efficiency and forecasting accuracy at the same time. In this paper, the fusion method of evidence theory is applied to stock price prediction. Evidence theory deals with the uncertainty of stock price prediction and improves the accuracy of prediction. At the same time, the fusion method of evidence theory has low time complexity and fast prediction processing speed.

Date: 2021-04, Revised 2021-07
New Economics Papers: this item is included in nep-cwa
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2104.05204 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2104.05204

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2104.05204