EconPapers    
Economics at your fingertips  
 

The Efficient Hedging Frontier with Deep Neural Networks

Zheng Gong, Carmine Ventre and John O'Hara

Papers from arXiv.org

Abstract: The trade off between risks and returns gives rise to multi-criteria optimisation problems that are well understood in finance, efficient frontiers being the tool to navigate their set of optimal solutions. Motivated by the recent advances in the use of deep neural networks in the context of hedging vanilla options when markets have frictions, we introduce the Efficient Hedging Frontier (EHF) by enriching the pipeline with a filtering step that allows to trade off costs and risks. This way, a trader's risk preference is matched with an expected hedging cost on the frontier, and the corresponding hedging strategy can be computed with a deep neural network. We further develop our framework to improve the EHF and find better hedging strategies. By adding a random forest classifier to the pipeline to forecast market movements, we show how the frontier shifts towards lower costs and reduced risks, which indicates that the overall hedging performances have improved. In addition, by designing a new recurrent neural network, we also find strategies on the frontier where hedging costs are even lower.

Date: 2021-04
New Economics Papers: this item is included in nep-cmp, nep-cwa, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2104.05280 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2104.05280

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2104.05280