Automatic Double Machine Learning for Continuous Treatment Effects
Sylvia Klosin
Papers from arXiv.org
Abstract:
In this paper, we introduce and prove asymptotic normality for a new nonparametric estimator of continuous treatment effects. Specifically, we estimate the average dose-response function - the expected value of an outcome of interest at a particular level of the treatment level. We utilize tools from both the double debiased machine learning (DML) and the automatic double machine learning (ADML) literatures to construct our estimator. Our estimator utilizes a novel debiasing method that leads to nice theoretical stability and balancing properties. In simulations our estimator performs well compared to current methods.
Date: 2021-04
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/2104.10334 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2104.10334
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().