EconPapers    
Economics at your fingertips  
 

Random perfect information games

J\'anos Flesch, Arkadi Predtetchinski and Ville Suomala

Papers from arXiv.org

Abstract: The paper proposes a natural measure space of zero-sum perfect information games with upper semicontinuous payoffs. Each game is specified by the game tree, and by the assignment of the active player and of the capacity to each node of the tree. The payoff in a game is defined as the infimum of the capacity over the nodes that have been visited during the play. The active player, the number of children, and the capacity are drawn from a given joint distribution independently across the nodes. We characterize the cumulative distribution function of the value $v$ using the fixed points of the so-called value generating function. The characterization leads to a necessary and sufficient condition for the event $v \geq k$ to occur with positive probability. We also study probabilistic properties of the set of Player I's $k$-optimal strategies and the corresponding plays.

Date: 2021-04
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2104.10528 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2104.10528

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2104.10528