Stock Price Forecasting in Presence of Covid-19 Pandemic and Evaluating Performances of Machine Learning Models for Time-Series Forecasting
Navid Mottaghi and
Sara Farhangdoost
Papers from arXiv.org
Abstract:
With the heightened volatility in stock prices during the Covid-19 pandemic, the need for price forecasting has become more critical. We investigated the forecast performance of four models including Long-Short Term Memory, XGBoost, Autoregression, and Last Value on stock prices of Facebook, Amazon, Tesla, Google, and Apple in COVID-19 pandemic time to understand the accuracy and predictability of the models in this highly volatile time region. To train the models, the data of all stocks are split into train and test datasets. The test dataset starts from January 2020 to April 2021 which covers the COVID-19 pandemic period. The results show that the Autoregression and Last value models have higher accuracy in predicting the stock prices because of the strong correlation between the previous day and the next day's price value. Additionally, the results suggest that the machine learning models (Long-Short Term Memory and XGBoost) are not performing as well as Autoregression models when the market experiences high volatility.
Date: 2021-05
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2105.02785 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.02785
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().