EconPapers    
Economics at your fingertips  
 

Aspects of a phase transition in high-dimensional random geometry

Axel Pr\"user, Imre Kondor and Andreas Engel

Papers from arXiv.org

Abstract: A phase transition in high-dimensional random geometry is analyzed as it arises in a variety of problems. A prominent example is the feasibility of a minimax problem that represents the extremal case of a class of financial risk measures, among them the current regulatory market risk measure Expected Shortfall. Others include portfolio optimization with a ban on short selling, the storage capacity of the perceptron, the solvability of a set of linear equations with random coefficients, and competition for resources in an ecological system. These examples shed light on various aspects of the underlying geometric phase transition, create links between problems belonging to seemingly distant fields and offer the possibility for further ramifications.

Date: 2021-05, Revised 2021-06
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Published in Entropy 2021, 23(7), 805

Downloads: (external link)
http://arxiv.org/pdf/2105.04395 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.04395

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2022-01-04
Handle: RePEc:arx:papers:2105.04395