Correlation-Robust Optimal Auctions
Wanchang Zhang
Papers from arXiv.org
Abstract:
I study the design of auctions in which the auctioneer is assumed to have information only about the marginal distribution of a generic bidder's valuation, but does not know the correlation structure of the joint distribution of bidders' valuations. I assume that a generic bidder's valuation is bounded and $\bar{v}$ is the maximum valuation of a generic bidder. The performance of a mechanism is evaluated in the worst case over the uncertainty of joint distributions that are consistent with the marginal distribution. For the two-bidder case, the second-price auction with the uniformly distributed random reserve maximizes the worst-case expected revenue across all dominant-strategy mechanisms under certain regularity conditions. For the $N$-bidder ($N\ge3$) case, the second-price auction with the $\bar{v}-$scaled $Beta (\frac{1}{N-1},1)$ distributed random reserve maximizes the worst-case expected revenue across standard (a bidder whose bid is not the highest will never be allocated) dominant-strategy mechanisms under certain regularity conditions. When the probability mass condition (part of the regularity conditions) does not hold, the second-price auction with the $s^*-$scaled $Beta (\frac{1}{N-1},1)$ distributed random reserve maximizes the worst-case expected revenue across standard dominant-strategy mechanisms, where $s^*\in (0,\bar{v})$.
Date: 2021-05, Revised 2022-05
New Economics Papers: this item is included in nep-des, nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2105.04697 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.04697
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().