Robust Inference on Income Inequality: $t$-Statistic Based Approaches
Rustam Ibragimov,
Paul Kattuman and
Anton Skrobotov (antonskrobotov@gmail.com)
Papers from arXiv.org
Abstract:
Empirical analyses on income and wealth inequality and those in other fields in economics and finance often face the difficulty that the data is heterogeneous, heavy-tailed or correlated in some unknown fashion. The paper focuses on applications of the recently developed \textit{t}-statistic based robust inference approaches in the analysis of inequality measures and their comparisons under the above problems. Following the approaches, in particular, a robust large sample test on equality of two parameters of interest (e.g., a test of equality of inequality measures in two regions or countries considered) is conducted as follows: The data in the two samples dealt with is partitioned into fixed numbers $q_1, q_2\ge 2$ (e.g., $q_1=q_2=2, 4, 8$) of groups, the parameters (inequality measures dealt with) are estimated for each group, and inference is based on a standard two-sample $t-$test with the resulting $q_1, q_2$ group estimators. Robust $t-$statistic approaches result in valid inference under general conditions that group estimators of parameters (e.g., inequality measures) considered are asymptotically independent, unbiased and Gaussian of possibly different variances, or weakly converge, at an arbitrary rate, to independent scale mixtures of normal random variables. These conditions are typically satisfied in empirical applications even under pronounced heavy-tailedness and heterogeneity and possible dependence in observations. The methods dealt with in the paper complement and compare favorably with other inference approaches available in the literature. The use of robust inference approaches is illustrated by an empirical analysis of income inequality measures and their comparisons across different regions in Russia.
Date: 2021-05, Revised 2021-11
New Economics Papers: this item is included in nep-cis, nep-ecm and nep-tra
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2105.05335 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.05335
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).