Multilevel Monte Carlo simulation for VIX options in the rough Bergomi model
Florian Bourgey and
Stefano De Marco
Papers from arXiv.org
Abstract:
We consider the pricing of VIX options in the rough Bergomi model. In this setting, the VIX random variable is defined by the one-dimensional integral of the exponential of a Gaussian process with correlated increments, hence approximate samples of the VIX can be constructed via discretization of the integral and simulation of a correlated Gaussian vector. A Monte-Carlo estimator of VIX options based on a rectangle discretization scheme and exact Gaussian sampling via the Cholesky method has a computational complexity of order $\mathcal{O}(\varepsilon^{-4})$ when the mean-squared error is set to $\varepsilon^2$. We demonstrate that this cost can be reduced to $\mathcal{O}(\varepsilon^{-2} \log^2(\varepsilon))$ combining the scheme above with the multilevel method, and further reduced to the asymptotically optimal cost $\mathcal{O}(\varepsilon^{-2})$ when using a trapezoidal discretization. We provide numerical experiments highlighting the efficiency of the multilevel approach in the pricing of VIX options in such a rough forward variance setting.
Date: 2021-05, Revised 2025-01
New Economics Papers: this item is included in nep-cmp and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2105.05356 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.05356
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().