EconPapers    
Economics at your fingertips  
 

Multi-Horizon Forecasting for Limit Order Books: Novel Deep Learning Approaches and Hardware Acceleration using Intelligent Processing Units

Zihao Zhang and Stefan Zohren

Papers from arXiv.org

Abstract: We design multi-horizon forecasting models for limit order book (LOB) data by using deep learning techniques. Unlike standard structures where a single prediction is made, we adopt encoder-decoder models with sequence-to-sequence and Attention mechanisms to generate a forecasting path. Our methods achieve comparable performance to state-of-art algorithms at short prediction horizons. Importantly, they outperform when generating predictions over long horizons by leveraging the multi-horizon setup. Given that encoder-decoder models rely on recurrent neural layers, they generally suffer from slow training processes. To remedy this, we experiment with utilising novel hardware, so-called Intelligent Processing Units (IPUs) produced by Graphcore. IPUs are specifically designed for machine intelligence workload with the aim to speed up the computation process. We show that in our setup this leads to significantly faster training times when compared to training models with GPUs.

Date: 2021-05, Revised 2021-08
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://arxiv.org/pdf/2105.10430 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.10430

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2105.10430