EconPapers    
Economics at your fingertips  
 

Deep learning of transition probability densities for stochastic asset models with applications in option pricing

Haozhe Su, M. V. Tretyakov and David P. Newton

Papers from arXiv.org

Abstract: Transition probability density functions (TPDFs) are fundamental to computational finance, including option pricing and hedging. Advancing recent work in deep learning, we develop novel neural TPDF generators through solving backward Kolmogorov equations in parametric space for cumulative probability functions. The generators are ultra-fast, very accurate and can be trained for any asset model described by stochastic differential equations. These are "single solve", so they do not require retraining when parameters of the stochastic model are changed (e.g. recalibration of volatility). Once trained, the neural TDPF generators can be transferred to less powerful computers where they can be used for e.g. option pricing at speeds as fast as if the TPDF were known in a closed form. We illustrate the computational efficiency of the proposed neural approximations of TPDFs by inserting them into numerical option pricing methods. We demonstrate a wide range of applications including the Black-Scholes-Merton model, the standard Heston model, the SABR model, and jump-diffusion models. These numerical experiments confirm the ultra-fast speed and high accuracy of the developed neural TPDF generators.

Date: 2021-05, Revised 2023-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in Management Science 2024

Downloads: (external link)
http://arxiv.org/pdf/2105.10467 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.10467

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2105.10467