Neural Options Pricing
Timothy DeLise
Papers from arXiv.org
Abstract:
This research investigates pricing financial options based on the traditional martingale theory of arbitrage pricing applied to neural SDEs. We treat neural SDEs as universal It\^o process approximators. In this way we can lift all assumptions on the form of the underlying price process, and compute theoretical option prices numerically. We propose a variation of the SDE-GAN approach by implementing the Wasserstein distance metric as a loss function for training. Furthermore, it is conjectured that the error of the option price implied by the learnt model can be bounded by the very Wasserstein distance metric that was used to fit the empirical data.
Date: 2021-05
New Economics Papers: this item is included in nep-big and nep-cwa
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2105.13320 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2105.13320
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().