A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting
Chao Wang and
Richard Gerlach
Papers from arXiv.org
Abstract:
This paper proposes an innovative threshold measurement equation to be employed in a Realized-GARCH framework. The proposed framework incorporates a nonlinear threshold regression specification to consider the leverage effect and model the contemporaneous dependence between the observed realized measure and hidden volatility. A Bayesian Markov Chain Monte Carlo method is adapted and employed for model estimation, with its validity assessed via a simulation study. The validity of incorporating the proposed measurement equation in Realized-GARCH type models is evaluated via an empirical study, forecasting the 1% and 2.5% Value-at-Risk and Expected Shortfall on six market indices with two different out-of-sample sizes. The proposed framework is shown to be capable of producing competitive tail risk forecasting results in comparison to the GARCH and Realized-GARCH type models.
Date: 2021-06, Revised 2022-10
New Economics Papers: this item is included in nep-ets, nep-for, nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2106.00288 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2106.00288
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().