Quantifying the Impact of Human Capital, Job History, and Language Factors on Job Seniority with a Large-scale Analysis of Resumes
Austin P Wright,
Caleb Ziems,
Haekyu Park,
Jon Saad-Falcon,
Duen Horng Chau,
Diyi Yang and
Maria Tomprou
Papers from arXiv.org
Abstract:
As job markets worldwide have become more competitive and applicant selection criteria have become more opaque, and different (and sometimes contradictory) information and advice is available for job seekers wishing to progress in their careers, it has never been more difficult to determine which factors in a r\'esum\'e most effectively help career progression. In this work we present a novel, large scale dataset of over half a million r\'esum\'es with preliminary analysis to begin to answer empirically which factors help or hurt people wishing to transition to more senior roles as they progress in their career. We find that previous experience forms the most important factor, outweighing other aspects of human capital, and find which language factors in a r\'esum\'e have significant effects. This lays the groundwork for future inquiry in career trajectories using large scale data analysis and natural language processing techniques.
Date: 2021-06
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2106.11846 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2106.11846
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().