Deep calibration of the quadratic rough Heston model
Mathieu Rosenbaum and
Jianfei Zhang
Papers from arXiv.org
Abstract:
The quadratic rough Heston model provides a natural way to encode Zumbach effect in the rough volatility paradigm. We apply multi-factor approximation and use deep learning methods to build an efficient calibration procedure for this model. We show that the model is able to reproduce very well both SPX and VIX implied volatilities. We typically obtain VIX option prices within the bid-ask spread and an excellent fit of the SPX at-the-money skew. Moreover, we also explain how to use the trained neural networks for hedging with instantaneous computation of hedging quantities.
Date: 2021-07, Revised 2022-05
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://arxiv.org/pdf/2107.01611 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.01611
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().