EconPapers    
Economics at your fingertips  
 

Inference for Low-Rank Models

Victor Chernozhukov, Christian Hansen, Yuan Liao and Yinchu Zhu

Papers from arXiv.org

Abstract: This paper studies inference in linear models with a high-dimensional parameter matrix that can be well-approximated by a ``spiked low-rank matrix.'' A spiked low-rank matrix has rank that grows slowly compared to its dimensions and nonzero singular values that diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, and heterogeneous treatment effects. For inference, we apply a procedure that relies on an initial nuclear-norm penalized estimation step followed by two ordinary least squares regressions. We consider the framework of estimating incoherent eigenvectors and use a rotation argument to argue that the eigenspace estimation is asymptotically unbiased. Using this framework we show that our procedure provides asymptotically normal inference and achieves the semiparametric efficiency bound. We illustrate our framework by providing low-level conditions for its application in a treatment effects context where treatment assignment might be strongly dependent.

Date: 2021-07, Revised 2023-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2107.02602 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.02602

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-29
Handle: RePEc:arx:papers:2107.02602