Correlated Equilibria in Large Anonymous Bayesian Games
Frederic Koessler,
Marco Scarsini and
Tristan Tomala
Papers from arXiv.org
Abstract:
We consider multi-population Bayesian games with a large number of players. Each player aims at minimizing a cost function that depends on this player's own action, the distribution of players' actions in all populations, and an unknown state parameter. We study the nonatomic limit versions of these games and introduce the concept of Bayes correlated Wardrop equilibrium, which extends the concept of Bayes correlated equilibrium to nonatomic games. We prove that Bayes correlated Wardrop equilibria are limits of action flows induced by Bayes correlated equilibria of the game with a large finite set of small players. For nonatomic games with complete information admitting a convex potential, we prove that the set of correlated and of coarse correlated Wardrop equilibria coincide with the set of probability distributions over Wardrop equilibria, and that all equilibrium outcomes have the same costs. We get the following consequences. First, all flow distributions of (coarse) correlated equilibria in convex potential games with finitely many players converge to Wardrop equilibria when the weight of each player tends to zero. Second, for any sequence of flows satisfying a no-regret property, its empirical distribution converges to the set of distributions over Wardrop equilibria and the average cost converges to the unique Wardrop cost.
Date: 2021-07, Revised 2023-09
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2107.06312 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.06312
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().