A General Approach for Parisian Stopping Times under Markov Processes
Gongqiu Zhang and
Lingfei Li
Papers from arXiv.org
Abstract:
We propose a method based on continuous time Markov chain approximation to compute the distribution of Parisian stopping times and price Parisian options under general one-dimensional Markov processes. We prove the convergence of the method under a general setting and obtain sharp estimate of the convergence rate for diffusion models. Our theoretical analysis reveals how to design the grid of the CTMC to achieve faster convergence. Numerical experiments are conducted to demonstrate the accuracy and efficiency of our method for both diffusion and jump models. To show the versality of our approach, we develop extensions for multi-sided Parisian stopping times, the joint distribution of Parisian stopping times and first passage times, Parisian bonds and for more sophisticated models like regime-switching and stochastic volatility models.
Date: 2021-07
New Economics Papers: this item is included in nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2107.06605 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2107.06605
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().